Android Malware Detection Using Backpropagation Neural Network

نویسندگان

  • Fais Al Huda
  • Wayan Firdaus Mahmudy
  • Herman Tolle
چکیده

The rapid growing adoption of android operating system around the world affects the growth of malware that attacks this platform. One possible solution to overcome the threat of malware is building a comprehensive system to detect existing malware. This paper proposes multilayer perceptron artificial neural network trained with backpropagation algorithm to determine an application is malware or nonmalware application which is often called benign application. The parameters that used in this study based on the list of permissions in the manifest file, the battery rating based on permission, and the size of the application file. Final weights obtained in the training phase will be used in mobile applications for malware detection. The experimental results show that the proposed method for detection of malware on android is effective. The effectiveness is demonstrated by the results of the accuracy of the system developed in this study is relatively high to recognize existing malware samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

R2-D2: ColoR-inspired Convolutional NeuRal Network (CNN)-based AndroiD Malware Detections

Machine Learning (ML) has found it particularly useful in malware detection. However, as the malware evolves very fast, the stability of the feature extracted from malware serves as a critical issue in malware detection. The recent success of deep learning in image recognition, natural language processing, and machine translation indicates a potential solution for stabilizing the malware detect...

متن کامل

HADM: Hybrid Analysis for Detection of Malware

Android is the most popular mobile operating system with a market share of over 80% [1]. Due to its popularity and also its open source nature, Android is now the platform most targeted by malware, creating an urgent need for effective defense mechanisms to protect Android-enabled devices. In this paper, we propose a novel Android malware classification method called HADM, Hybrid Analysis for D...

متن کامل

Intelligent Hybrid Approach for Android Malware Detection based on Permissions and API Calls

Android malware is rapidly becoming a potential threat to users. The number of Android malware is growing exponentially; they become significantly sophisticated and cause potential financial and information losses for users. Hence, there is a need for effective and efficient techniques to detect the Android malware applications. This paper proposes an intelligent hybrid approach for Android mal...

متن کامل

DroidCheck: Android Malware Detection by Behavioral Techniques and Honeypot

Android, the name is quite enough to show its dominance in the mobile computing world. Android is now the market leader among all its competitors. As, it is the largest shareholder in the market it has become bull’s eye for the attackers. Security is one of the major concerns for android users today. It has become the most viable target of security threats. With the increase in power and featur...

متن کامل

Spectral Estimation of Printed Colors Using a Scanner, Conventional Color Filters and applying backpropagation Neural Network

Reconstruction the spectral data of color samples using conventional color devices such as a digital camera or scanner is always of interest. Nowadays, multispectral imaging has introduced a feasible method to estimate the spectral reflectance of the images utilizing more than three-channel imaging. The goal of this study is to spectrally characterize a color scanner using a set of conventional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016